# Mathematics 11 <br> Curriculum Outcomes Framework (110 hours) 

| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[$ [N] | Connections | $[R]$ | Reasoning |
| [ME] | Mental Mathematics | $[T]$ | Technology |
|  | and Estimation | $[V]$ | Visualization |
|  |  |  |  |
|  |  |  |  |


| Measurement (M) (15-20 hours) <br> General Curriculum Outcome: Students will be expected to develop spatial sense and proportional reasoning. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| M01 Students will be expected to solve problems that involve the application of rates. [CN, PS, R] | M01.01 Interpret rates in a given context, such as the arts, commerce, the environment, medicine, or recreation. <br> M01.02 Solve a rate problem that requires the isolation of a variable. <br> M01.03 Determine and compare rates and unit rates. <br> M01.04 Make and justify a decision using rates. <br> M01.05 Represent a given rate pictorially. <br> M01.06 Draw a graph to represent a rate. <br> M01.07 Explain, using examples, the relationship between the slope of a graph and a rate. <br> M01.08 Describe a context for a given rate or unit rate. <br> M01.09 Identify and explain factors that influence a rate in a given context. <br> M01.10 Solve a contextual problem that involves rates or unit rates. |
| M02 Students will be expected to solve problems that involve scale diagrams, using proportional reasoning. [CN, PS, R, V] | M02.01 Explain, using examples, how scale diagrams are used to model a 2-D shape or a 3-D object. <br> M02.02 Determine, using proportional reasoning, the scale factor, given one dimension of a 2-D shape or a 3-D object and its representation. <br> M02.03 Determine, using proportional reasoning, an unknown dimension of a 2-D shape or a 3-D object, given a scale diagram or a model. <br> M02.04 Draw, with or without technology, a scale diagram of a given 2-D shape according to a specified scale factor (enlargement or reduction). <br> M02.05 Solve a contextual problem that involves scale diagrams. |


| $[$ [C] | Communication | $[$ [PS $]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[$ [N] | Connections | $[R]$ | Reasoning |
| $\left[\begin{array}{lll}{[M E]} & \text { Mental Mathematics } & {[T]}\end{array}\right.$ | Technology |  |  |
|  | and Estimation | $[V]$ | Visualization |

## Measurement (M) (15-20 hours)

General Curriculum Outcome: Students will be expected to develop spatial sense and proportional reasoning.

| Specific Curriculum Outcomes |
| :--- |
| M03 Students will be expected to demonstrate an |
| understanding of the relationships among scale factors, |
| areas, surface areas, and volumes of similar 2-D shapes |
| and 3-D objects. |
| [C, CN, PS, R, V] |

## Performance Indicators

Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes.
M03.01 Determine the area of a 2-D shape, given the scale diagram, and justify the reasonableness of the result.
M03.02 Determine the surface area and volume of a 3-D object, given the scale diagram, and justify the reasonableness of the result.
M03.03 Explain, using examples, the effect of a change in the scale factor on the area of a 2-D shape.
M03.04 Explain, using examples, the effect of a change in the scale factor on the surface area of a 3-D object.
M03.05 Explain, using examples, the effect of a change in the scale factor on the volume of a 3-D object.
M03.06 Explain, using examples, the relationships among scale factor, area of a 2-D shape, surface area of a 3-D object, and volume of a 3-D object.
M03.07 Solve a spatial problem that requires the manipulation of formulas.
M03.08 Solve a contextual problem that involves the relationships among scale factors, areas, and volumes.

## Mathematics 11

| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[R]$ | Reasoning |
| $[$ [ME] | Mental Mathematics | $[T]$ | Technology |
| and Estimation |  | $[V]$ | Visualization |

## Geometry (G) (25-30 hours)

General Curriculum Outcome: Students will be expected to develop spatial sense.

| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| :---: | :---: |
| G01 Students will be expected to derive proofs that involve the properties of angles and triangles. $[\mathrm{CN}, \mathrm{R}, \mathrm{~V}]$ | (It is intended that deductive reasoning be limited to direct proof.) <br> G01.01 Generalize, using inductive reasoning, the relationships between pairs of angles formed by transversals and parallel lines, with or without technology. <br> G01.02 Prove, using deductive reasoning, properties of angles formed by transversals and parallel lines, including the sum of the angles in a triangle. <br> G01.03 Generalize, using inductive reasoning, a rule for the relationship between the sum of the interior angles and the number of sides ( $n$ ) in a polygon, with or without technology. <br> G01.04 Identify and correct errors in a given proof of a property involving angles. <br> G01.05 Verify, with examples, that if lines are not parallel the angle properties do not apply. <br> G01.06 Verify, through investigation, the minimum conditions that make a triangle unique. |


| $[$ [C] | Communication | $[\mathrm{PS}]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[\mathrm{R}]$ | Reasoning |
| $[$ [ME] | Mental Mathematics | $[\mathrm{T}]$ | Technology |
| and Estimation | $[\mathrm{V}]$ | Visualization |  |


| Geometry (G) (25-30 hours) <br> General Curriculum Outcome: Students will be expected to develop spatial sense. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| G02 Students will be expected to solve problems that involve the properties of angles and triangles. <br> [CN, PS, V] | G02.01 Determine the measures of angles in a diagram that involve parallel lines, angles, and triangles and justify the reasoning. <br> G02.02 Identify and correct errors in a given solution to a problem that involves the measures of angles. <br> G02.03 Solve a contextual problem that involves angles or triangles. <br> G02.04 Construct parallel lines, using only a compass and straight edge or a protractor and straight edge, and explain the strategy used. <br> G02.05 Determine if lines are parallel, given the measure of an angle at each intersection formed by the lines and a transversal. |
| G03 Students will be expected to solve problems that involve the cosine law and the sine law, including the ambiguous case. <br> [CN, PS, R] | G03.01 Draw a diagram to represent a problem that involves the cosine law or sine law. <br> G03.02 Explain the steps in a given proof of the sine law or cosine law. <br> G03.03 Solve a problem involving the cosine law that requires the manipulation of a formula. <br> G03.04 Explain, concretely, pictorially, or symbolically, whether zero, one, or two triangles exist, given two sides and a non-included angle. <br> G03.05 Solve a problem involving the sine law that requires the manipulation of a formula. <br> G03.06 Solve a contextual problem that involves the cosine law or the sine law. |

## Mathematics 11

| $[$ [C] | Communication | $[\mathrm{PS}]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[\mathrm{R}]$ | Reasoning |
| $[$ [ME] | Mental Mathematics | $[\mathrm{T}]$ | Technology |
| and Estimation | $[\mathrm{V}]$ | Visualization |  |


| Logical Reasoning (LR) (10 hours) <br> General Curriculum Outcome: Students will be expected to develop logical reasoning. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| LR01 Students will be expected to analyze and prove conjectures, using inductive and deductive reasoning, to solve problems. <br> [C, CN, PS, R] | LR01.01 Make conjectures by observing patterns and identifying properties, and justify the reasoning. <br> LR01.02 Explain why inductive reasoning may lead to a false conjecture. <br> LR01.03 Compare, using examples, inductive and deductive reasoning. <br> LR01.04 Provide and explain a counterexample to disprove a given conjecture. <br> LR01.05 Prove algebraic and number relationships, such as divisibility rules, number properties, mental mathematics strategies, or algebraic number tricks. <br> LR01.06 Prove a conjecture using deductive reasoning (not limited to twocolumn proofs). <br> LR01.07 Determine if an argument is valid and justify the reasoning. <br> LR01.08 Identify errors in a given proof. <br> LR01.09 Solve a contextual problem involving inductive or deductive reasoning. |

## Mathematics 11

| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| [CN] | Connections | $[R]$ | Reasoning |
| [ME] Mental Mathematics | $[T]$ | Technology |  |
| and Estimation | $[V]$ | Visualization |  |
|  |  |  |  |


| Logical Reasoning (LR) (10 hours) <br> General Curriculum Outcome: Students will be expected to develop logical reasoning. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| LR02 Students will be expected to analyze puzzles and games that involve spatial reasoning, using problem-solving strategies. $[C N, P S, R, V]$ | (It is intended that this outcome be integrated throughout the course by using sliding, rotation, construction, deconstruction, and similar puzzles and games.) <br> LR02.01 Determine, explain, and verify a strategy to solve a puzzle or to win a game; for example, <br> - guess and check <br> - look for a pattern <br> - make a systematic list <br> - draw or model <br> - eliminate possibilities <br> - simplify the original problem <br> - work backward <br> - develop alternative approaches <br> LR02.02 Identify and correct errors in a solution to a puzzle or in a strategy for winning a game. <br> LR02.03 Create a variation on a puzzle or a game, and describe a strategy for solving the puzzle or winning the game. |

## Mathematics 11

| $[$ [C] | Communication | $[\mathrm{PS}]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[\mathrm{R}]$ | Reasoning |
| $[$ [ME] | Mental Mathematics | $[\mathrm{T}]$ | Technology |
| and Estimation | $[\mathrm{V}]$ | Visualization |  |


| Statistics (S) (20-25 hours) <br> General Curriculum Outcome: Students will be expected to develop statistical reasoning. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| S01 Students will be expected to demonstrate an understanding of normal distribution, including standard deviation and $z$-scores. $[\mathrm{CN}, \mathrm{PS}, \mathrm{~T}, \mathrm{~V}]$ | S01.01 Explain, using examples, the meaning of standard deviation. <br> S01.02 Calculate, using technology, the population standard deviation of a data set. <br> S01.03 Explain, using examples, the properties of a normal curve, including the mean, median, mode, standard deviation, symmetry, and area under the curve. <br> S01.04 Determine if a data set approximates a normal distribution and explain the reasoning. <br> S01.05 Compare the properties of two or more normally distributed data sets. <br> S01.06 Explain, using examples that represent multiple perspectives, the application of standard deviation for making decisions in situations such as warranties, insurance or opinion polls. <br> S01.07 Solve a contextual problem that involves the interpretation of standard deviation. <br> S01.08 Determine, with or without technology, and explain the $z$-score for a given value in a normally distributed data set. <br> S01.09 Solve a contextual problem that involves normal distribution. |


| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[R]$ | Reasoning |
| [ME] | Mental Mathematics | $[T]$ | Technology |
|  | and Estimation | $[V]$ | Visualization |
|  |  |  |  |


| Statistics (S) (20-25 hours) <br> General Curriculum Outcome: Stud |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| S02 Students will be expected to interpret statistical data, using confidence intervals, confidence levels, and margin of error. <br> [C, CN, R] | (It is intended that the focus of this outcome be on interpretation of data rather than on statistical calculations.) <br> S02.01 Explain, using examples, how confidence levels, margin of error, and confidence intervals may vary depending on the size of the random sample. <br> S02.02 Explain, using examples, the significance of a confidence interval, margin of error, or confidence level. <br> S02.03 Make inferences about a population from sample data, using given confidence intervals, and explain the reasoning. <br> S02.04 Provide examples from print or electronic media in which confidence intervals and confidence levels are used to support a particular position. <br> S02.05 Interpret and explain confidence intervals and margin of error, using examples found in print or electronic media. <br> S02.06 Support a position by analyzing statistical data presented in the media. |
| S03 Students will be expected to critically analyze society's use of inferential statistics. $[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{R}, \mathrm{~T}]$ | S03.01 Investigate examples of the use of inferential statistics in society. <br> S03.02 Assess the accuracy, reliability, and relevance of statistical claims by <br> - identifying examples of bias and points of view <br> - identifying and describing the data collection methods <br> - determining if the data is relevant <br> S03.03 Identify, discuss, and present multiple sides of the issues with supporting data. |


| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| $[\mathrm{CN}]$ | Connections | $[R]$ | Reasoning |
| [ME] | Mental Mathematics | $[T]$ | Technology |
|  | and Estimation | $[V]$ | Visualization |
|  |  |  |  |


| Relations and Functions (RF) (25-30 hours) <br> General Outcome: Students will be expected to develop algebraic and graphical reasoning through the study of relations. |  |
| :---: | :---: |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met the corresponding specific curriculum outcomes. |
| RF01 Students will be expected to model and solve problems that involve systems of linear inequalities in two variables. <br> [CN, PS, T, V] | RF01.01 Model a problem using a system of linear inequalities in two variables. <br> RF01.02 Graph the boundary line between two half planes for each inequality in a system of linear inequalities, and justify the choice of solid or broken lines. <br> RF01.03 Determine and explain the solution region that satisfies a linear inequality, using a test point when given a boundary line. <br> RF01.04 Determine, graphically, the solution region for a system of linear inequalities, and verify the solution. <br> RF01.05 Explain, using examples, the significance of the shaded region in the graphical solution of a system of linear inequalities. <br> RF01.06 Solve an optimization problem using linear programming. |
| RF02 Students will be expected to demonstrate an understanding of the characteristics of quadratic functions, including vertex, intercepts, domain and range, and axis of symmetry. $[\mathrm{CN}, \mathrm{PS}, \mathrm{~T}, \mathrm{~V}]$ | (It is intended that completion of the square not be required.) <br> RF02.01 Determine, with or without technology, the intercepts of the graph of a quadratic function. <br> RF02.02 Determine, by factoring, the roots of a quadratic equation, and verify by substitution. <br> RF02.03 Determine, using the quadratic formula, the roots of a quadratic equation. <br> RF02.04 Explain the relationships among the roots of an equation, the zeros of the corresponding function, and the $x$-intercepts of the graph of the function. <br> RF02.05 Explain, using examples, why the graph of a quadratic function may have zero, one, or two $x$-intercepts. |

## Mathematics 11

| $[$ [C] | Communication | $[P S]$ | Problem Solving |
| :--- | :--- | :--- | :--- |
| [CN] | Connections | $[R]$ | Reasoning |
| [ME] Mental Mathematics | $[T]$ | Technology |  |
| and Estimation | $[V]$ | Visualization |  |
|  |  |  |  |


| Relations and Functions (RF) (25-30 hours) <br> General Outcome: Students will be expected to develop algebraic and graphical reasoning through the study of relations. |  |
| :--- | :--- | :--- |
| Specific Curriculum Outcomes | Performance Indicators <br> Use the following set of indicators to determine whether students have met <br> the corresponding specific curriculum outcomes. |
|  | RFO2.06Express a quadratic equation in factored form, using the zeros of a <br> corresponding function or the $x$-intercepts of its graph. |
|  | RF02.07Determine, with or without technology, the coordinates of the <br> vertex of the graph of a quadratic function. |
| RF02.08Determine the equation of the axis of symmetry of the graph of a <br> quadratic function, given $x$-intercepts of the graph. |  |
| RF02.09Determine the coordinates of the vertex of the graph of a quadratic <br> function, given the equation of the function and the axis of <br> symmetry, and determine if the $y$-coordinate of the vertex is a <br> maximum or a minimum. |  |

